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A B S T R A C T

Cross-domain recommendation (CDR) has become popular to alleviate the sparsity problem in
target-domain recommendation by utilizing auxiliary domain knowledge. A basic assumption
of CDR is that users have shared preferences across domains, but most existing CDR models
do not distinguish between users’ unique preferences and shared preferences. We propose
a new CDR model, called DRLCDR, which adopts a variational bipartite graph encoder to
learn domain-specific representations and domain-shared representations, respectively. To make
the domain-shared representation learned from different domains similar, the domain-specific
representations learned from one domain is used as conditional information to guide the
domain-shared representations (which is also called domain-conditional representation in our
model) in another domain. In addition, a bridge function loss is adopted to further encourage
the proximity of domain-conditional representations in the embedding space. Experiments on
four public datasets show that DRLCDR outperforms strong baselines, including the recent CDR
method using disentangled learning, with an average improvement of 3.32% and 3.01% for HR
and NDCG, respectively.

. Introduction

Recommender systems (RSs) have been extensively deployed in various online information platforms with the aim of compre-
ending users’ information needs and facilitating the discovery of desired items amidst the vast volume of available information.
mong various recommendation techniques, collaborative filtering (CF) (Sarwar, Karypis, Konstan, & Riedl, 2001), as a simple and
ffective solution, has achieved great success in modeling user preferences by using historical user interaction data. Many CF-based
ecommendation methods have been proposed and gained ever-increasing progress on recommender accuracy from the early shallow
odels (i.e., MF (Koren, Bell, & Volinsky, 2009), PMF (Mnih & Salakhutdinov, 2007), WRMF (Hu, Koren, & Volinsky, 2008)) to

urrent deep models (i.e., NeuMF (He et al., 2017), NGCF (Wang, He, Wang, Feng, & Chua, 2019), LightGCN (He et al., 2020)),
ith decades of development. Despite these advancements, CF-based models still face the challenge of data sparsity. The user-item

nteraction data required for training these models are often limited, resulting in a sparse user–item matrix. This sparsity issue can
ead to a dramatic drop in performance and can make it challenging for the models to accurately capture user preferences and
rovide reliable recommendations.
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Researchers have explored various strategies to address the sparsity issue in recommendation systems, including utilizing side
nformation such as user reviews (Catherine & Cohen, 2017; Cheng et al., 2018; McAuley & Leskovec, 2013) or item images (He

McAuley, 2016; Liu et al., 2022; McAuley, Targett, Shi, & Van Den Hengel, 2015; Yang, Wang, Dong, Dong, Wang, & Chua,
022). The additional information provides new insights of items and users and thus can help learn user preferences and item
eatures. However, utilizing this information requires extracting effective features from textual or visual data. From the perspective
f exploiting user-item interaction data in CF, a direct approach is to collect more user-item interaction data from other sources to
elp better understand user preferences, which is the focus of cross-domain recommendation (CDR) (Wang, Ye, Ma, Li, & Zhuang,
023; Yu et al., 2021; Zhu et al., 2022). CDR is a type of recommendation system that enhances the recommendation performance of
target domain by utilizing user-item interaction data from multiple domains or sources (Man, Shen, Jin, & Cheng, 2017; Zhu et al.,
021). It involves transferring knowledge from one domain to another to address data sparsity and enhance the accuracy of the
ecommendation system. In recent years, CDR has garnered significant research attention, and numerous methods have been reported
n this field (Cao et al., 2022; Li & Tuzhilin, 2020). These methods can be broadly classified into two approaches based on the
istinct approaches used to model the auxiliary and target domains. The first approach involves extending the classical single-domain
ecommendation approach. For example, CMF (Singh & Gordon, 2008) collaboratively factorizes the user–item interaction matrix of
oth the auxiliary and target domains, while sharing a common user representation. PPGN (Zhao, Li, & Fu, 2019) constructs a unified
ser–item bipartite graph in two domains, then performs graph convolution operations to model the higher-order interaction data
n the unified graph. Methods in this approach focus on modeling data within individual domains and disregard the correlations
etween various domains (Man et al., 2017; Zhu, Chen, Wang, Liu, & Zheng, 2019). Consequently, these methods cannot effectively
tilize cross-domain information, which restricts their overall performance. The other approach is to first learn user representations
ndependently in each domain, and then adopt different strategies to transfer knowledge from the source domain to the target
omain. For example, CoNet (Hu, Zhang, & Yang, 2018) utilizes a neural network for each domain, then transfers information
etween domains through a cross-connected network. BiTGCF (Liu, Li, Li, & Pan, 2020) adopts GCN to independently learn the
mbedding of each domain, and then subsequently incorporates the propagation layer to transfer knowledge bi-directionally across
wo domains. While this approach utilizes various transfer learning strategies to transfer abundant information from the auxiliary
omain to the target domain, it falls short in eliminating irrelevant information (e.g., domain-specific preferences) that could cause
egative transfer issues in cross-domain recommendations.

It is an acknowledged fact that users have diverse preferences for various items (Ma, Zhou, Cui, Yang, & Zhu, 2019; Wang et al.,
020). In CDR, a basic assumption is that users shared some common interests among the various domains, which are derived from
sers’ distinct personality (Liu et al., 2020; Zhu et al., 2022). Besides the common interests, users also have some distinct preferences
hich are specific for different domains. For ease of presentation, we denote the common and unique interests of different domains
y domain-shared and domain-specific preferences. Most existing CDR methods do not distinguish between domain-specific and
omain-shared preferences when performing information transfer (Hu et al., 2018; Zhao et al., 2019; Zhu et al., 2021). Consequently,
t is possible that unique preferences from auxiliary domains may be transferred to the target domain and negatively impacts the
reference learning of users in target domain. Therefore, it is crucial to decouple the diverse preferences of users and provide
elevant information for target domains based on different scenarios and needs to improve the performance of CDR.

Disentangled representation learning has recently attracted significant interest because of its ability to extract valuable knowledge
rom user interactions and disentangle it into representation vectors of varying dimensions or distributions. A recent work Dis-
nCDR (Cao et al., 2022) applied this technique in CDR and has demonstrated its effectiveness. Specifically, DisenCDR disentangles
omain-specific and domain-shared information by leveraging an exclusive regularizer, an informative regularizer and a variational
ipartite graph encoder (Cao et al., 2022). The domain-shared representation is a combination of domain-specific information based
n the number of items which users interact with in each domain as a ratio to the total number of items interacted within both
omains. Despite achieving improved results, it is worth noting that since most user feedback is implicit (e.g., clicks, purchases)
nd observed user interactions could be noisy. For example, users may accidentally click on an item and subsequently realize they
re not actually interested in it (Wang et al., 2020). This noise in user interactions can significantly influence the domain-shared
nformation generated via taking control of the ratio to combine domain-specific information in both domains.

Motivated by the above observations, in this work, we propose a novel CDR model called decoupled domain-specific and domain-
onditional representation learning for CDR (short for DRLCDR). Different from the previous work, our model first learns the
omain-specific and domain-shared preferences separately within each domain, and then uses a disentangled loss function to further
ecouple the two types of preferences in both domains, as well as a bridge loss function to connect the domain-shared preferences
earned in the two domains. In addition, to make the domain-shared preferences learn separately from both domains more similar, we
reat the domain-specific preference from one domain as conditional information to guide the domain-shared preference in the other
omain. In this way, the influence of user interaction noise in existing method (Cao et al., 2022) for domain-shared representation
earning can be avoided. To achieve the goal, we adopt the variational bipartite graph encoder (Cao et al., 2022) to model data
istributions and learn domain-specific representations in one domain, which are then used as the conditional representations to
earn the domain-shared representations in the other domain. Extensive experiments on four real-world datasets demonstrate the
ffectiveness of our proposed approach. We compared our approach with several strong baselines, including the ones employing
isentangled representation learning techniques. The results show that DRLCDR outperforms all competing methods. In addition, we
arried out ablation studies and detailed analysis to investigate the validity of each component in our model. The main contributions
f this paper are as follows:

• We propose a CDR method based on disentangled representation learning, called DRLCDR, which decouples user preferences
into domain-specific and domain-conditional preferences and transfers the shared user preferences of users across domains,
2

hence improving recommendation performance on both domains.



Information Processing and Management 61 (2024) 103689Y. Zhang et al.

s
a
o
W
a
e
n

N
h
a
r
p
S
a

l
t
b
i

i
d
2
e
a

2

d
i
u
o
r
i
d
h
2
2
p
t
t
p
l
r
a
s
i

• In the design of our model, we utilize the variational bipartite graph encoder to decouple user preferences and employ
a decouple loss to ensure mutual independence between the preferences. Furthermore, we adopt a bridge loss to achieve
knowledge transfer between domains.

• We conducted extensive experiments on four real-world datasets to validate the generalizability and a comprehensive ablation
study to evaluate the effectiveness of our model. The experimental results demonstrate the superiority of our proposed method
over the state-of-the-art baselines.

2. Related work

2.1. CF-based methods

The simplicity and effectiveness of collaborative filtering models have contributed to their remarkable success in recommender
ystems. Matrix factorization (MF) (Koren et al., 2009), a classical approach in collaborative filtering methods, aims to learn user
nd item representations by minimizing the error between the reconstruction matrix and the user-item interaction matrix. Based
n this simple and effective idea, various MF-based variants have been proposed, e.g., PMF (Mnih & Salakhutdinov, 2007) and
RMF (Hu et al., 2008). Due to its excellent feature extraction capabilities, deep learning has been a great success in various fields

nd has also been applied to recommender systems for modeling user representations (Zhang, Yao, Sun, & Tay, 2019). A typical
xample is NeuMF (He et al., 2017), which learns user and item features in complex interaction matrices through nonlinear neural
etworks.

Recently, graph convolutional networks (GCNs) are widely used in recommender systems (Berg, Kipf, & Welling, 2017;
ajafabadi, Mohamed, & Onn, 2019; Tao et al., 2020; Wu, Zhong, & Ye, 2023; Yan et al., 2022) for their capability of leveraging
igh-order neighborhood information. NGCF (Wang et al., 2019) iteratively propagates node embedding over interaction graph and
chieves excellent performance. To perform the GCN operation more efficiently, LightGCN (He et al., 2020) simplifies the model by
emoving the transformation function and nonlinear activation function from NGCF, which effectively improves recommendation
erformance. UltraGCN (Mao et al., 2021) takes a different approach to simplify the graph convolution-based propagation strategy.
pecifically, it directly approximates the limit of infinite layer graph convolution through constrained loss, which guarantees high
ccuracy while significantly reducing the computational cost.

To better model users’ diverse preferences towards various items, researchers have also explored the disentangled representation
earning in recommendation (Li et al., 2022; Liu et al., 2022), which can effectively differentiate the factors in user preferences
hat drive the user to make decisions on selecting items. For instance, MacridVAE (Ma et al., 2019) disentangles user intent from
oth macro- and micro- levels based on VAE. DGCF (Wang et al., 2020) adopts GCN as the backbone network to construct a set of
ntent-aware graphs by separating user interactions to produce a disentangled representation of user intents.

Although the aforementioned recommendation methods have achieved remarkable success, when there are only limited
nteractions available for users and items, they still suffer from the data sparsity issue. Various approaches have been developed to
eal with the data sparsity issues, such as exploiting side information (Catherine & Cohen, 2017; Chang et al., 2023; Cheng et al.,
018; McAuley & Leskovec, 2013; Yang, Feng, Ji, Wang, & Chua, 2021) and high-order interactions among users and items (He
t al., 2020; Wang et al., 2019). In this work, we focus on the cross-domain recommendation, which has garnered considerable
ttention result of its effectiveness. We will make a brief review of the recent progress of CDR in the next subsection.

.2. Cross-domain recommendation

Cross-domain recommendation (CDR) aims to leverage knowledge from auxiliary domains to enhance modeling of users in target
omain. Early CDR methods directly extend single-domain recommendation methods to multi-domains to enhance performance
n target domain. For example, CMF (Singh & Gordon, 2008) collaboratively factorizes user–item interaction matrix by sharing
ser representations in different domains. Another example is TiDA-GCN (Guo et al., 2022), which constructs a unified graph
f two domains and applies a time interval-enhanced graph convolution message propagation strategy to learn user and item
epresentations. Later on, the transfer learning-based CDR methods gained more attention due to the success of transfer learning
n various fields (Sung, Cho, & Bansal, 2022; Zamir et al., 2018). One typical CDR method is EMCDR, which constructs a two-
omain user mapping function from aligned common user representations (Man et al., 2017). Recently, more advanced techniques
ave been applied in CDR to enhance performance, including dual learning (Li & Tuzhilin, 2020), meta-learning (Zhu et al.,
021, 2022), reinforcement learning (Guo, Zhang, Chen, Wang, & Yin, 2023), and disentangled representation learning (Cao et al.,
022). PTUPCDR (Zhu et al., 2022), for example, uses a meta-network to learn user features in auxiliary domains and generate
ersonalized bridge functions that transfer user preferences to target domains. RL-ISN (Guo et al., 2023) achieves efficient knowledge
ransfer across both domains by utilizing a reinforcement learning-enhanced domain filter to eliminate irrelevant user behaviors
hat may impair cross-domain recommendations. Despite the advancements made by these methods, they disregard domain-specific
references when performing information transfer, which may erroneously transfer domain-specific preferences across domains, and
ead to negative transfer problems. To achieve more robust user preference modeling and effective information transfer, disentangled
epresentation learning-based CDR approaches have been developed more recently. For instance, DisenCDR (Cao et al., 2022)
dopts a variational bipartite graph encoder (VBGE) to learn domain-specific user representations for each domain and domain-
hared representations of both domains; and then decouples domain-specific and domain-shared representations using exclusive and
3

nformative regularizers. The domain-shared representations are generated based on a weighting combination of the domain-specific
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representations from different domains, which means it needs to carefully design a weighting scheme to measure the contributions
of different domains for good performance. In fact, the weighting method used in DisenCDR may introduce interaction noises into
the domain-shared representation learning, as discussed in Section 1.

To overcome this limitation, our model trains domain-specific and domain-shared representations (or domain-conditional
epresentations in our model) separately for different domains. To ensure that the domain-conditional representations learned from
ifferent domains are similar, we propose a conditional VBGE which utilizes domain-specific representations in auxiliary domain
s a conditional information to guide the learning of domain-conditional representations in target domain. Furthermore, we design
bridge loss function to encourage their proximity in the embedding space. Consequently, our model avoids the requirement of

esigning a weighting scheme to measure the contributions of different domains in order to obtain the domain-shared representations
nd offers greater flexibility in learning domain-shared representations.

. Proposed model

.1. Preliminaries

Problem setting. In this paper, we consider two domains, X and Y, which share a common user set denoted by  with a size
f 𝑀 , and the item sets for the two domains are denoted as  and  with sizes of 𝐼 and 𝐽 , respectively. Let  =

(

 , , )

nd  =
(

 , , ) denote the user-item bipartite graph for domain X and Y, where  and  represent two observed user
nteractions in domain X and domain Y, respectively. Next, DRLCDR aims to learn domain-specific user representations 𝒛𝒙𝒖 and 𝒛𝒚𝒖 ,
tem representations 𝒛𝒙𝒗 and 𝒛𝒚𝒗, and to transfer knowledge across domains through the domain-conditional representations 𝒛𝒙𝒄𝒖 and
𝒚𝒄
𝒖 , in order to improve the recommendation performance in both domains.
Embedding Initialization. For embedding initialization, we follow previous work (He et al., 2020; Liu et al., 2020) to map user

nd item IDs into an embedding space. For independence of the learned domain-specific and domain-conditional representations,
RLCDR initializes them separately. For each user 𝑢, we use 𝒆𝒙(𝟎)𝒖 ∈ R𝑑 , 𝒆𝒚

(𝟎)
𝒖 ∈ R𝑑 , 𝒆𝒙𝒄

(𝟎)
𝒖 ∈ R𝑑 , and 𝒆𝒚𝒄

(𝟎)
𝒖 ∈ R𝑑 as the initial

mbedding vectors for user domain-X-specific, domain-Y-specific, domain-X-conditional, and domain-Y-conditional representations,
espectively. 𝑑 is the embedding size. Similarly, 𝒆𝒙(𝟎)𝒗 and 𝒆𝒚

(𝟎)
𝒗 represent the initial embedding vectors for items in domain X and

omain Y, respectively. Specifically, for domain X, the initial embeddings of user 𝑢𝑚 and item 𝑣𝑖 are:

𝒆𝒙(𝟎)𝒖𝒎
= 𝑷 𝒙 ⋅ 𝑰𝑫𝒙

𝒖 ; 𝒆𝒙𝒄
(𝟎)

𝒖𝒎 = 𝑷 𝒙𝒄 ⋅ 𝑰𝑫𝒙
𝒖 ; 𝒆𝒙(𝟎)𝒗𝒊

= 𝑸𝒙 ⋅ 𝑰𝑫𝒙
𝒗 , (1)

here 𝑷 𝒙 ∈ R𝑀×𝑑 and 𝑷 𝒙𝒄 ∈ R𝑀×𝑑 are the learnable parameter matrices for user 𝑢𝑚 for domain-specific and domain-conditional
epresentation learning, respectively. And 𝑸𝒙 ∈ R𝐼×𝑑 is the learnable parameter matrix for item 𝑣𝑖. The matrices 𝑰𝑫𝒙

𝒖 and 𝑰𝑫𝒙
𝒗

re ID embedding matrices for user 𝑢 ∈  and item 𝑣 ∈  , respectively. The embeddings 𝒆𝒚
(𝟎)

𝒖𝒎 , 𝒆𝒚𝒄
(𝟎)

𝒖𝒎 and 𝒆𝒚
(𝟎)

𝒗𝒋 in domain Y are
nitialized in the same way.

.2. Our model

Before delving into the details, we would like to first provide an overview of our model. DRLCDR learns domain-specific
epresentations (DSRs) and domain-conditional representations (DCRs) of user for each domain based on the user-item interaction
ata in that domain. We adopt the variational bipartite graph encoder (VBGE) (Cao et al., 2022) to learn both representations from
he user-item interaction data. Specifically, VBGE is used to learn the DSRs for each domain firstly. Then, we use the learned DSRs
rom one domain as a source of conditional information to guide the DCRs learning in the other domain. Fig. 1 illustrates the learning
rocess of DCRs and DSRs in our model. It is worth mentioning that the DCRs in our model represent the shared preferences across
ifferent domains. This guidance ensures that the DCRs learned in different domains are close in the embedding space. Furthermore,
e introduce a decouple loss function to further separate DSRs and DCRs within each domain and a bridge loss function to encourage

he proximity of the DCRs from different domain in the embedding space.
In the following subsections, we provide a brief introduction to GCN, which is the core model used in VBGE for modeling user-

tem interaction data. Subsequently, we provide a comprehensive description of the representation learning process for DSRs and
CRs with VBGE, and introduce the decouple loss and bridge loss functions. Finally, we present the prediction function employed
y our model.

.2.1. GCN brief
The core of GCN is to iteratively aggregate messages from neighboring nodes for the current node (Cheng et al., 2023). In

ur model, we retain the feature transformation matrix and nonlinear activation function which are considered unnecessary in the
ingle-domain recommendation systems (Chen, Wu, Hong, Zhang, & Wang, 2020; He et al., 2020). This is because our model learns
ith domain X and domain Y as source and target domains of mutual. To avoid noise in one domain affecting the learning of the
ther, DRLCDR adopts the two components to enhance the generalization of the model. Taking user domain-specific representation
earning as an example, for the user 𝑢 and item 𝑣 in domain X, the propagation process of this node on the user-item interaction
raph is expressed as:

𝒆𝒙(𝒍+𝟏)𝒖 = 𝛿

⎛

⎜

⎜

⎜

∑

𝑣∈ 𝑥
𝑢

1
√

| 𝑥| | 𝑥|

(

𝑾 𝒙(𝒍)
𝒖 𝒆𝒙(𝒍)𝒗

)

⎞

⎟

⎟

⎟

, 𝒆𝒙(𝒍+𝟏)𝒗 = 𝛿

⎛

⎜

⎜

⎜

∑

𝑢∈ 𝑥
𝑣

1
√

| 𝑥|| 𝑥|

(

𝑾 𝒙(𝒍)
𝒗 𝒆𝒙(𝒍)𝒖

)

⎞

⎟

⎟

⎟

, (2)
4

⎝

| 𝑢 | | 𝑣 |
⎠ ⎝

| 𝑢 || 𝑣 |
⎠
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Fig. 1. Illustration of DSRs and DCRs learning in DRLCDR.

here 𝒆𝒙(𝒍+𝟏)𝒖 and 𝒆𝒙(𝒍+𝟏)𝒗 denote the updated embedding of user 𝑢 and item 𝑣 after propagation at layer 𝑙.  𝑥
𝑢 and  𝑥

𝑣 denote the
set of neighboring nodes to the user 𝑢 and item 𝑣 in domain X, respectively. 𝑾 𝒙(𝒍)

𝒖 ∈ R𝑑′×𝑑 and 𝑾 𝒙(𝒍)
𝒗 ∈ R𝑑′×𝑑 are the trainable

weight matrix and 𝑑′ is the dimension size of the transformation. 𝛿 (⋅) is the activation function and we use LeakyReLU in DRLCDR.
After 𝐿 layers’ propagation, we can obtain 𝐿 + 1 embeddings to describe the user. The final embedding 𝒆𝒙𝒖 and 𝒆𝒙𝒗 are obtained by
aggregating these embeddings as follows:

𝒆𝒙𝒖 =
𝐿
∑

𝑙=0
𝒆𝒙(𝒍)𝒖 , 𝒆𝒙𝒗 =

𝐿
∑

𝑙=0
𝒆𝒙(𝒍)𝒗 . (3)

For the sake of simplicity in presentation, we use 𝐺𝐶𝑁(⋅) to denote the final embedding obtained by GCN hereafter. For example,
he embedding of user 𝑢 in domain X obtained by GCN (i.e., 𝒆𝒙𝒖) is denoted as 𝐺𝐶𝑁(𝒆𝒙(𝟎)𝒖 ).

.2.2. Domain-specific representation learning
Following the learning of user and item embeddings with GCN, we adopt variational bipartite graph encoder (VBGE) (Cao et al.,

022) to approximate their feature distributions, i.e., posterior distributions. Specifically, as shown in Fig. 1(a), for a user 𝑢 in
omain X, VBGE leverages GCN to explicitly encode the collaborative signals of higher-order neighbors and follows VAE paradigm
o learn the mean and standard deviation of the domain-specific representation distribution of user to model its domain-specific
epresentation 𝒛𝒙𝒖 , as follows:

𝝁𝒙
𝒖 = 𝐺𝐶𝑁𝑥

𝜇

(

𝒆𝒙(𝟎)𝒖

)

; 𝝈𝒙
𝒖 = 𝐺𝐶𝑁𝑥

𝜎

(

𝒆𝒙(𝟎)𝒖

)

; 𝒛𝒙𝒖 ∼ 
(

𝝁𝒙
𝒖 ,
[

𝑑𝑖𝑎𝑔
{

𝝈𝒙
𝒖
}]2

)

, (4)

here 𝝁𝒙
𝒖 and 𝝈𝒙

𝒖 are the mean and standard deviation of the Gaussian distribution 𝒛𝒙𝒖 . Note that they are learned separately with
ifferent GCNs. Therefore, we use 𝐺𝐶𝑁𝑥

𝜇 (⋅) and 𝐺𝐶𝑁𝑥
𝜎 (⋅) to denote different GCN models for learning mean 𝝁𝒙

𝒖 and standard
eviation 𝝈𝒙

𝒖 representation in domain X, respectively.
VBGE approximates the posterior distribution of the domain-specific representation by maximizing the likelihood of the observed

nteractions based on the Gaussian distribution defined by the learned mean and standard deviation (as shown in Eq. (4)) (Liang,
rishnan, Hoffman, & Jebara, 2018; Ma et al., 2019). However, due to the sampling operation for this distribution is non-
ifferentiable, a re-parameterization trick is often adopted to deal with this issue. Concretely, the sampling operation is transformed

𝒙

5

nto a differentiable operation by introducing a differentiable variable to replace the random sampling process, i.e., sampling 𝒛𝒖 for



Information Processing and Management 61 (2024) 103689Y. Zhang et al.

w

f
𝒛

(
K
t

w
i
d

user 𝑢 from the standard Gaussian distribution  (0, 1) with the following operation:

𝒛𝒙𝒖 = 𝝁𝒙
𝒖 + 𝝈𝒙

𝒖 ⊙ 𝜖, 𝜖 ∼  (0, 1) , (5)

where ⊙ is the dot product operation. The approximate posterior distributions of users and items in domain X and domain Y (i.e., 𝒛𝒚𝒖 ,
𝒛𝒚𝒗 and 𝒛𝒙𝒗) can be obtained by using re-parameterization sampling in a similar way.

To learn the domain-specific representation of user 𝑢 in domain X, we need to minimize the difference between the approximate
posterior distribution obtained through re-parameterization sampling and the true distribution. This is achieved by maximizing
the evidence lower bound (ELBO) (Kingma & Welling, 2013; Rezende, Mohamed, & Wierstra, 2014) to optimize the variational
lower bound for domain-specific representation learning, i.e., to maximize the likelihood of observed input data. Thus, the objective
function is transformed to maximize the likelihood estimates of the learned domain-specific representation and the true domain-
specific representation and minimize the difference between the sampled domain-specific distribution and the true distribution. Take
𝐿
(

𝑢𝑥; 𝜃𝑥𝑢 , 𝜙
𝑥
𝑢
)

in domain X as an example, the objective function is:

𝐿
(

𝑢𝑥; 𝜃𝑥𝑢 , 𝜙
𝑥
𝑢
)

= 𝐷𝐾𝐿

[

𝑞𝜙𝑥𝑢
(

𝒛𝒙𝒖 |𝑢
𝑥) ∥ 𝑝

(

𝒛𝒙𝒖
)

]

− E𝑞𝜙𝑥𝑢 (𝒛
𝒙
𝒖 |𝑢𝑥)

[

𝑙𝑜𝑔𝑝𝜃𝑥𝑢
(

𝑢𝑥|𝒛𝒙𝒖
)

]

, (6)

here 𝐿
(

𝑢𝑥; 𝜃𝑥𝑢 , 𝜙
𝑥
𝑢
)

is variational inference loss for user 𝑢. 𝜃𝑥𝑢 and 𝜙𝑥
𝑢 are parameter of VBGE. 𝐿(𝑢𝑦; 𝜃𝑦𝑢 , 𝜙

𝑦
𝑢), 𝐿(𝑣𝑦; 𝜃𝑦𝑣 , 𝜙

𝑦
𝑣) and

𝐿(𝑣𝑥; 𝜃𝑥𝑣 , 𝜙
𝑥
𝑣) can be derived analogously for the DSRs of users and items in both domains.

3.2.3. Domain-conditional representation learning
To learn a user’s DCRs, we leverage the DSRs learned from in the source domain as guiding information in VBGE, as shown in

Fig. 1(b). Specifically, in domain X, we construct a conditional representation vector 𝒄𝒙𝒖 based on its initial embedding vector 𝒆𝒙𝒄
(𝟎)

𝒖
and the DSRs from Domain Y (i.e., 𝒛𝒚𝒖) with a concatenation operation, namely:

𝒄𝒙𝒖 = 𝒆𝒙𝒄
(𝟎)

𝒖 ∥ 𝒛𝒚𝒖 , (7)

where ∥ is the concatenation operation. In the next, we take the conditional representation vector 𝒄𝒙𝒖 as input and adopt the VAE
framework to learn the domain conditional representation 𝒛𝒙𝒄𝒖 of user 𝑢 as follows:

𝝁𝒙𝒄
𝒖 = 𝐺𝐶𝑁𝑥𝑐

𝜇
(

𝒄𝒙𝒖
)

; 𝝈𝒙𝒄
𝒖 = 𝐺𝐶𝑁𝑥𝑐

𝜎
(

𝒄𝒙𝒖
)

; 𝒛𝒙𝒄𝒖 ∼ 
(

𝝁𝒙𝒄
𝒖 ,

[

𝑑𝑖𝑎𝑔
{

𝝈𝒙𝒄
𝒖
}]2

)

, (8)

where 𝝁𝒙𝒄
𝒖 and 𝝈𝒙𝒄

𝒖 are the Gaussian distribution 𝒛𝒙𝒄𝒖 of the mean and standard deviation. 𝐺𝐶𝑁𝑥𝑐
𝜇 (⋅) and 𝐺𝐶𝑁𝑥𝑐

𝜎 (⋅) denote the GCNs
or learning mean 𝝁𝒙𝒄

𝒖 and standard deviation 𝝈𝒙𝒄
𝒖 representation in domain X, respectively. The domain conditional representation

𝒚𝒄
𝒖 of user 𝑢 in domain Y can be obtained in a similar way.

In the next, the re-parameterization trick also has been used to optimize the variational lower bound by maximizing ELBO
Kingma & Welling, 2013; Rezende et al., 2014). The optimization objective is to maximize the reconstruction loss and the negative
L divergence between the approximation posterior distribution of domain-conditional representation and the true distribution, in

his case. The variational lower bound optimization objective can be rewritten as:

𝐿
(

𝑢𝑥𝑐 , 𝒛𝒚𝒖 ; 𝜃
𝑥𝑐
𝑢 , 𝜙𝑥𝑐

𝑢
)

= 𝐷𝐾𝐿

[

𝑞𝜙𝑥𝑐𝑢
(

𝒛𝒙𝒄𝒖 |𝑢𝑥, 𝒛𝒚𝒖
)

∥ 𝑝
(

𝒛𝒙𝒖
)

]

− E
𝑞𝜙𝑥𝑐𝑢

(

𝒛𝒙𝒄𝒖 |𝑢𝑥 ,𝒛𝒚𝒖
)

[

𝑙𝑜𝑔𝑝𝜃𝑥𝑢
(

𝒛𝒚𝒖 , 𝑢𝑥|𝒛
𝒙𝒄
𝒖
)

]

, (9)

here 𝑞𝜙𝑥𝑐𝑢
(

𝒛𝒙𝒄𝒖 |𝑢𝑥, 𝒛𝒚𝒖
)

is the approximate posterior distribution of domain-X-conditional representation with 𝒛𝒚𝒖 as the conditional
nformation. The other notations are defined in the same way as in Eq. (6). Similarly, 𝐿

(

𝑢𝑦𝑐 , 𝒛𝒙𝒖 ; 𝜃
𝑦𝑐
𝑢 , 𝜙𝑦𝑐

𝑢
)

can be derived for the
omain-conditional representation of user 𝑢 in domain Y.

Finally, the total variational inference loss for learning DCRs and DSRs in our model can be summarized as:

𝐿𝑉 =
∑

𝑢∈ ,𝑣∈∪ (𝐿(𝑢𝑥; 𝜃𝑥𝑢 , 𝜙
𝑥
𝑢 ) + 𝐿(𝑢𝑦; 𝜃𝑦𝑢 , 𝜙

𝑦
𝑢) + 𝐿(𝑣𝑦; 𝜃𝑦𝑣 , 𝜙

𝑦
𝑣) + 𝐿(𝑣𝑥; 𝜃𝑥𝑣 , 𝜙

𝑥
𝑣)

+𝐿
(

𝑢𝑥𝑐 , 𝒛𝒚𝒖 ; 𝜃
𝑥𝑐
𝑢 , 𝜙𝑥𝑐

𝑢
)

+ 𝐿
(

𝑢𝑦𝑐 , 𝒛𝒙𝒖 ; 𝜃
𝑦𝑐
𝑢 , 𝜙𝑦𝑐

𝑢
)

).
(10)

3.2.4. Decouple loss & bridge loss
Decouple loss. For good performance in CDR, it is preferable for the representations of domain-specific and domain-conditional

to be independent of mutual. However, adopting different initialization embedding vectors does not ensure that they are mutually
exclusive. Therefore, we introduce a decouple loss in our model to further disentangle the DSRs and DCRs. Following previous
work (Cao et al., 2022), we utilize Kullback–Leibler divergence to encourage the independence of DCRs and DSRs because it directly
computes the divergence between probability distributions to represent their differences. Specifically, for DCRs 𝒛𝒙𝒖 and DSRs 𝒛𝒙𝒄𝒖 of
user 𝑢 in domain X, the decouple loss 𝐿𝑥

𝐾𝐿𝑢
is defined as:

𝐿𝑋
𝐾𝐿𝑢

= −𝒛𝒙𝒖 𝑙𝑜𝑔
𝒛𝒙𝒖
𝒛𝒙𝒄𝒖

(11)

The decouple loss in domain Y (i.e., 𝐿𝑌
𝐾𝐿𝑢

) can be computed in the same way. Finally, the total decouple loss of our model is
summarized as:

𝐿𝐷 =
∑

(𝐿𝑋
𝐾𝐿𝑢

+ 𝐿𝑌
𝐾𝐿𝑢

). (12)
6

𝑢∈
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Fig. 2. A model comparison: (a) the transfer learning-based CDR models which utilize transfer strategies to fuse knowledge between two domains; (b) DisenCDR
learns a domain-shared representation for both domains and disentangles the domain-shared and domain-specific representations; (c) our model learns domain-
specific representations (DSRs) and domain-conditional representations (DCRs) separately for each domain and uses the DSRs in one domain as conditional
information to learn the DCRs in the other domain.

Bridge loss. In our model, DCRs represent user preferences that are shared across different domains. Therefore, it is crucial to
ensure that the DCRs learned in different domains (X and Y) are as similar as possible in the embedding space. To achieve this,
we introduce a bridge loss to encourage their closeness. Specifically, given the domain-X-conditional representation 𝒛𝒙𝒄𝒖 and the
domain-Y-conditional representation 𝒛𝒚𝒄𝒖 for each user 𝑢, the bridge loss in our model is defined as:

𝐿𝐵 =
∑

𝑢∈
𝒛𝒙𝒄𝒖 𝑙𝑜𝑔

𝒛𝒙𝒄𝒖
𝒛𝒚𝒄𝒖

. (13)

3.2.5. Prediction
Our model represents user preferences in two parts: DCRs and DSRs. To make predictions, we combine them with addition for

simplicity. More sophisticated combination methods are left for future exploration. The final prediction is made as follows:

𝑟𝑥𝑢𝑖 = 𝜎
(

𝑆
((

𝒛𝒙𝒄𝒖 + 𝒛𝒙𝒖
)

, 𝒛𝒙𝒗
))

, (14)

where 𝜎 (⋅) is the sigmoid function; 𝑆 (⋅) is the score function, where the dot product operation is adopted.

3.3. Model training

In this study, we followed the Top-N ranking task in the recommender system by ranking all unobserved items per test user.
Following previous works (Cao et al., 2022; Liu et al., 2020), the binary cross-entropy function is adopted for the recommendation
loss function. Formally, the objective function is defined as:

𝐿𝐵𝐶𝐸 = −
∑

(𝑢,𝑣)∈+∪−
𝑟𝑢𝑣𝑙𝑜𝑔𝑟̂𝑢𝑣 +

(

1 − 𝑟𝑢𝑣𝑙𝑜𝑔
(

1 − 𝑟̂𝑢𝑣
))

+ 𝜆‖𝛩‖

2
2, (15)

where + is the set of observed in the interaction matrix, − is the set of random sampling from unobserved in the interaction
matrix. 𝜆 is the 𝑙2 regularization parameter, 𝛩 denotes the model parameter set. Considering all the loss in our model, the final loss
function can be formulated as:

𝐿 = 𝐿𝐵𝐶𝐸 + 𝛼𝐿𝑉 + 𝛽𝐿𝐷 + 𝛾𝐿𝐵 , (16)

where 𝛼 is the weight of variational inference loss; 𝛽 is the coefficient to control the degree of disentanglement between the domain-
specific and domain-conditional representations in the two domains; 𝛾 is the coefficient to control the degree of knowledge transfer
in the two domains.

The mini-batch Adam algorithm is utilized to optimize the model. In addition, to alleviate the overfitting problem, we adopt the
dropout techniques during the model training process, which is consistent with previous studies (He et al., 2020; Liu et al., 2020).
The drop ratios were carefully optimized through experimentation.

4. Relation to other models

In this section, we discuss the difference of our model to other transfer learning-based CDR methods and the recent DisenCDR
model.
7
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4.1. Transfer learning-based CDR

The general paradigm of transfer learning-based CDR methods first learns user representations with an interaction encoder (like
LP or GNN) in each domain, and then transfers knowledge learned across domain with various techniques, such as mapping (Man

t al., 2017), meta-learning (Zhu et al., 2021, 2022), and parameter sharing (Xi et al., 2020), to assist modeling user preference in
arget domain. For example, DDTCDR (Li & Tuzhilin, 2020) adopts MLP as the encoder to transfer user similarity across domains by
earning potential orthogonal mapping functions. PTUPCDR (Zhu et al., 2022) presents a generic framework that can use different
ase encoders to create personalized bridge functions, which is accomplished by training a meta-network with user preference
mbeddings to transfer personalized preferences to each user. This paradigm can be formulated as:

𝒖𝒙 = 𝑓
(

ℎ(𝒆𝒙𝒖 ), ℎ(𝒆
𝒚
𝒖)
)

, (17)

where 𝒖𝒙 denotes the user representations of user 𝑢 in the domain X; 𝒆𝒙𝒖 , 𝒆𝒚𝒖 are initialization embedding of user 𝑢 in domain X and
domain Y, respectively. ℎ(⋅) denotes the modeling function of base encoder and 𝑓 (⋅) is the transfer learning function.

The paradigm of transfer learning-based CDR methods is illustrated in Fig. 2(a). The limitation of transfer learning-based methods
lies in their inability to differentiate between domain-specific and domain-shared preferences while transferring information across
domain. This can result in negative transfer problems.

4.2. DisenCDR recap

To tackle the limitation in transfer learning-based CDR methods, the recent DisenCDR models adopt the disentangled learning
techniques to disentangle domain-shared and domain-specific information. More specifically, DisenCDR (Cao et al., 2022) uses a
variational bipartite graph encoder (VBGE) within the framework of a Variational Autoencoder (VAE) by using GCN as the encoder.
Based on the VBGE, it learns a domain-specific representation and a domain-shared representation for each user with an information
regularizer. Additionally, an exclusive regularizer is employed to ensure independence between the two types of representations.
The illustration of DisenCDR is shown in Fig. 2(b). In domain X, the representation of user 𝑢 is defined as:

𝒖𝒙 = 𝑔
(

ℎ(𝒆𝒙𝒖 )
)

⏟⏞⏞⏟⏞⏞⏟
𝑑𝑜𝑚𝑎𝑖𝑛−𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐

+ 𝑔
(

𝜆 ⋅ ℎ(𝒆𝒙𝒔𝒉𝒖 ) + (1 − 𝜆) ⋅ ℎ(𝒆𝒚𝒔𝒉𝒖 )
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑑𝑜𝑚𝑎𝑖𝑛−𝑠ℎ𝑎𝑟𝑒𝑑

; 𝜆 =  𝑥
𝑢

 𝑥
𝑢 +

𝑦
𝑢
,

(18)

where 𝒆𝒙𝒖 , 𝒆𝒙𝒔𝒉𝒖 and 𝒆𝒚𝒔𝒉𝒖 are domian-X-specific, domain-X-shared and domain-Y-shared initialization embedding of user 𝑢, respectively.
ℎ(⋅) is the GCN encoder and 𝑔(⋅) denotes VBGE. 𝜆 is a parameter to control the contribution of the two domains. It is computed
as the ratio of the number of 𝑢’s interacted items in domain X to the total number of items interacted in both domains. Note that
the ratio of user interactions cannot effectively learn the similar preferences of users between two domains. Because the observed
interactions often contain noise, which may negatively impact the learning of the domain-shared representation.

4.3. Our model

The framework of our model is illustrated by Fig. 2(c). It can be noted from Fig. 2(b) that DisenCDR learns domain-specific
user representations for each domain and a common domain-shared representation for both domains. To learn the domain-shared
representation, it needs to carefully design a mechanism to control the contributions of different domains. In DRLCDR, we replace
domain-shared representations with domain-conditional representations, which are also learned for each domain. To ensure the
domain-conditional representations and facilitate the information transferring across two domains, we use two strategies: (1)
Using the learned domain-specific user representation in one domain as an information source to guide the domain-conditional
representation learning in the other domain. In this way, the domain-conditional representations in both domains are actually
learned conditionally on information extracted from the other domain and the interaction information of their own domain, which
will make them closer in the embedding space. And (2) using a bridge loss function to encourage them to be closer in the feature
space. The representation of user 𝑢 in domain X can be expressed as:

𝒖𝒙 = 𝑔
(

ℎ(𝒆𝒙𝒖 )
)

⏟⏞⏞⏟⏞⏞⏟
𝑑𝑜𝑚𝑎𝑖𝑛−𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐

+ 𝑔
(

ℎ(𝒆𝒙𝒄𝒖 ), 𝑔
(

ℎ(𝒆𝒚𝒖)
))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑑𝑜𝑚𝑎𝑖𝑛−𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

, (19)

where 𝒆𝒙𝒄𝒖 and 𝒆𝒚𝒖 are domain-X-conditional and domain-Y-specific initialization embedding of user 𝑢, respectively. ℎ(⋅) is the GCN
encoder and 𝑔(⋅) denotes VBGE. Compared with existing studies, from the equation, it can be seen that our model does not need the
parameter to control the contribution of different domains on learning the domain-shared representations. It is more flexible and
can naturally avoid the problem introduced by the parameter as in DisenDCR.

5. Experiment

The effectiveness of DRLCDR is validated by extensive experiments on four real-world datasets. In this section, we mainly focus
on the following three research questions:

RQ1: How does DRLCDR perform on ranking recommendation tasks comparing single-domain and cross-domain methods
baseline?

RQ2: How do different components in our model impact the recommendation performance?
8

RQ3: How do the key hyperparameters affect the recommended performance of our model?
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Table 1
Basic statistics of the couple datasets.
Dataset #user #items #train #test Sparsity

Cloth 9928 41,303 87,829 7562 99.98%
Sport 9928 32,310 92,612 8314 99.97%

Phone 20,448 28,657 142,790 18,851 99.97%
Elec 20,448 60,756 303,896 18,701 99.97%

Cloth 5860 30,870 50,016 3640 99.97%
Phone 5860 17,685 47,671 4680 99.95%

Sport 4998 22,101 50,558 3763 99.95%
Phone 4998 14,618 42,446 3984 99.94%

5.1. Experimental setup

5.1.1. Datasets
The Amazon dataset1 is widely adopted in cross-domain recommendation studies (Liu et al., 2020; Zhao et al., 2019). We

onduct experimentations on four categories in Amazon dataset, including Phones, Cloth, Elec and Sport. These four datasets contain
istorical interaction data of Amazon users from 1996 to 2014, and corresponding information such as user reviews and item at-
ributes. We divide them into four experimental groups that mutually serve as source and target domains, Cloth&Sport, Phone&Elec,
loth&Phone and Sport&Phone. For each experimental group, we retain only the overlapping users’ historical interaction data, which

ncludes users and items with at least 10 interactions. In other words, for the experimental group Cloth&Sport, we can either use
he information from Cloth to assist Sport training or use Sport as a source domain to improve performance of recommendations
n Cloth. And following the common setting in CDR, only common users in both domains are used in experiments to evaluate
ffectiveness of CDR models. Table 1 summarizes the detailed statistics for the four pairs of datasets.

.1.2. Evaluation protocol
We adopt the Leave-One-Out (LOO) evaluation method to evaluate the recommendation performance of all methods include

RLCDR and the competitors following prior works (Cao et al., 2022; Liu et al., 2020). In particular, we conducted a random
ampling process in the pre-processed dataset, where we selected one interaction per user as the test set, while considering the
emaining data as the training set. DRLCDR utilizes the learned users and items representation to predict scores for 1000 candidates,
hich include 999 negative items and 1 positive item sampled from the interaction data (Zhao, Chen, Wang, Gu, & Wen, 2020). We
dopt Hit Ratio (HR) and Normalized Discount Cumulative Gain (NDCG) for performance comparison over the Top-N items which
re set as 20.

.1.3. Baselines
We compare DRLCDR among the following single-domain and cross-domain baselines.
Single-domain baselines:

NeuMF (He et al., 2017): It is a typical neural collaborative method which takes advantage of a multi-layer perceptron to capture
the non-linear interactions between the features above the concatenation of the user and item vectors.
LightGCN (He et al., 2020): This classical recommendation approach is based on GCN and simplifies the GCN framework by
removing unnecessary components to improve recommendation performance.

• DGCF (Wang et al., 2020): The method is based on GCN and models user intent by introducing user intent-aware interaction
graphs and encourages independence among the intents by applying disentangled representation learning techniques.

• SimGCL (Yu et al., 2022): This method replaces the graph augmentation technique with adding uniform noise in the embedding
space and simplifies the contrast learning model.

Cross-domain baselines:

• CoNet (Hu et al., 2018): This method introduces a cross-connection network to link the base networks of both domains and
enhances bi-directional knowledge transfer between the two domains.

• BiTGCF (Liu et al., 2020): This is a GCN-based CDR method. It achieves bi-directional knowledge transfer between two domains
by a newly designed feature propagation module, while improving the recommendation performance of each domain.
TMCDR (Zhu et al., 2021): This method implicitly transforms the user representations learned by the base network across
domain via the meta-network after pre-training the two-domain models on the source and target domains with the base network,
respectively.
DisenCDR (Cao et al., 2022): This method is the latest CDR method based on disentangled representation learning, which
disentangles the user intent of source and target domains by two mutual information-based disentangled regularization methods
to learn the representations of domain-specific and domain-shared.

1 http://jmcauley.ucsd.edu/data/amazon/.
9
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Table 2
Performance comparison in terms of HR@20 and NDCG@20.

Dataset Metrics NeuMF LightGCN DGCF SimGCL CoNet Bi-TGCF TMCDR DisenCDR DRLCDR

Cloth HR 0.1708 0.1560 0.1775 0.2132 0.1732 0.2241 0.1627 0.2479 0.2571 3.58% ↑

NDCG 0.0771 0.0782 0.0821 0.1019 0.0779 0.1171 0.0756 0.1273 0.1309 2.75% ↑

Sport HR 0.1907 0.2178 0.2254 0.2379 0.1932 0.2827 0.1864 0.3132 0.3214 2.55% ↑

NDCG 0.0855 0.1071 0.1085 0.1197 0.0863 0.1448 0.0832 0.1543 0.1570 1.72% ↑

Phone HR 0.3304 0.3827 0.3873 0.4052 0.3142 0.4163 0.3422 0.4357 0.4427 1.58% ↑

NDCG 0.1635 0.2047 0.2067 0.2208 0.1507 0.2222 0.1706 0.2348 0.2394 1.92% ↑

Elec HR 0.3265 0.3280 0.3345 0.3547 0.3103 0.3677 0.3260 0.3852 0.3987 3.39% ↑

NDCG 0.1667 0.1676 0.1693 0.1893 0.1586 0.1931 0.1693 0.2069 0.2126 2.68% ↑

Cloth HR 0.1188 0.1286 0.1353 0.1493 0.1302 0.1572 0.0973 0.1742 0.1835 5.08% ↑

NDCG 0.0520 0.0537 0.0572 0.0632 0.0540 0.0724 0.0432 0.0833 0.0863 3.47% ↑

Phone HR 0.2394 0.2613 0.2704 0.2890 0.2416 0.2988 0.2335 0.3139 0.3421 8.24% ↑

NDCG 0.1113 0.1345 0.1392 0.1473 0.1045 0.1502 0.1102 0.1507 0.1638 7.98% ↑

Sport HR 0.1967 0.2163 0.2274 0.2457 0.2007 0.2563 0.2053 0.2965 0.2996 1.03% ↑

NDCG 0.0910 0.1102 0.1185 0.1239 0.0923 0.1247 0.1097 0.1394 0.1427 2.31% ↑

Phone HR 0.2661 0.2769 0.2886 0.2997 0.2319 0.3021 0.2542 0.3388 0.3426 1.11% ↑

NDCG 0.1203 0.1369 0.1463 0.1501 0.1047 0.1496 0.1256 0.1557 0.1576 1.21% ↑

5.1.4. Implementation details
We implement the DRLCDR model in PyTorch2 and our codes are released for reproducibility3. To ensure a fair comparison,

we adopt the hyperparameter settings reported in the original baseline paper, which are considered the best, and further fine-tune
them. For all methods, we fix the embedding size 𝑑 to 128 and the mini-batch size to 1024, and search for learning rates in the
range {0.01, 0.001, 0.0001}. In our model, the layer number of all GCNs (i.e., 𝐿) is set to 2. For other parameters, L2 regularization
coefficients are carefully searched in the range {1𝑒−5, 1𝑒−4, 1𝑒−3, 1𝑒−2, 1𝑒−1}; the variational inference loss weight 𝛼 is selected from
0.1, 0.2, 0.3, 0.4, 0.5}; the intra-domain decouple loss weight 𝛽 is selected from {5, 10, 15, 20, 25}; the inter-domain bridge loss
eight 𝛾 is selected from {5, 10, 15, 20, 25}. Furthermore, we implement the warm-up strategy and specify the number of epochs

o be 10. We test the model every 10 epochs during training and save the best parameters.

.2. Performance comparison (RQ1)

Table 2 shows the results of our model and all competitors on the four datasets. In particular, the best results are highlighted in
old font, while the second best results are underlined. Our experiments demonstrate superior recommendation performance of the
ross-domain model over the single-domain model across four real-world datasets, with several noteworthy observations as detailed
elow.

• Performance comparisons among single-domain recommendation (SDR) methods. LightGCN takes advantage of the GCN
technique to exploit the high-order neighbor information and achieves better performance than NeuMF, which adopts a neural
network as the base network. DGCF outperforms LightGCN by utilizing both the GCN and disentangled learning techniques to
model users’ multiple intents. The more recent SimGCL adopts a contrastive learning strategy by adding uniform noise into the
embedding space to create contrasting views and achieves the best performance among the single-domain recommendation
models.

• SDR vs. CDR. Comparing the CDR model with the single-domain model, it is evident that the CDR model beats out its
corresponding single-domain approach that uses the same backbone model. This highlights the benefits of leveraging additional
information from other domains. For instance, both NeuMF and CoNet adopt neural networks as the backbone model. However,
CoNet surpasses NeuMF by introducing a cross-connected network that allows bidirectional knowledge transfer across domains.
In the case of GCN-based models, BiTGCF performs better than LightGCN by using a bidirectional feature transfer module to
model the user representation. This is in contrast to LightGCN, which uses single-domain user-item interaction data. It is worth
noting that even though single-domain models like DGCF and SimGCL use advanced techniques like disentangled learning and
contrastive learning, Bi-TGCF consistently outperforms them. This further demonstrates the effectiveness of CDR in enhancing
recommendation accuracy.

• Performance comparisons among CDR methods. Regarding the CDR models, TMCDR uses task-oriented meta-networks as
a knowledge transfer strategy and achieves better recommendation results than CoNet, which uses cross-connected networks
for knowledge transfer. This is might because that TMCDR can implicitly transform auxiliary domain user embeddings into
target feature space. BiTGCF, that uses GCN as a base encoder, achieves better recommendation performance than CoNet,

2 https://pytorch.org/.
3 https://github.com/zhangyucs/DRLCDR.
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Table 3
Effects of different components in DRLCDR.
Variational inference ✓ ✓ ✓ ✓ ✓

Decouple ✓ ✓ ✓

Bridge ✓ ✓ ✓

Conditional information ✓

Cloth HR 0.2408 0.2438 0.2441 0.2456 0.2571
NDCG 0.1223 0.1235 0.1239 0.1247 0.1309

Sport HR 0.3007 0.3053 0.3098 0.3102 0.3214
NDCG 0.1473 0.1492 0.1517 0.1526 0.1570

Phone HR 0.4002 0.4128 0.4283 0.4292 0.4427
NDCG 0.2196 0.2263 0.2278 0.2283 0.2394

Elec HR 0.3525 0.3676 0.3762 0.3786 0.3987
NDCG 0.1902 0.1972 0.2019 0.2037 0.2126

Cloth HR 0.1611 0.1735 0.1772 0.1783 0.1835
NDCG 0.0752 0.0812 0.0819 0.0823 0.0863

Phone HR 0.3017 0.3122 0.3367 0.3137 0.3421
NDCG 0.1431 0.1495 0.1563 0.1498 0.1638

Sport HR 0.2583 0.2849 0.2936 0.2962 0.2996
NDCG 0.1254 0.1338 0.1376 0.1387 0.1427

Phone HR 0.3005 0.3193 0.3302 0.3318 0.3426
NDCG 0.1428 0.1492 0.1503 0.1513 0.1576

which uses a neural network as the base encoder. Both DisenCDR and BiTGCF adopt the same knowledge transfer strategy.
However, DisenCDR utilizes the variational autoencoder (VAE) framework to disentangle user preferences, which can avoid
transferring domain-specific information to the target domain and learning for better performance. As a reminder, DisenCDR
obtains domain-shared representations by combining domain-specific representations (DSRs) with a weight scheme that can be
biased by noise in user interactions. In contrast, our model learns domain-conditional representations (DCRs) separately using
DSRs as conditional information in VBGE and a bridge loss to ensure the proximity of DCRs learned in different domains. Our
approach is more flexible in capturing shared preferences across domains and avoids the bias issue occurred in DisenCDR. In
experiments, our model consistently outperforms DisenCDR across all datasets.

5.3. Ablation study (RQ2)

In this section, we study the contribution of different components of our model to the final performance. They are four main
omponents in our DRLCDR model: a variational inference component for learning DSRs and DCRs (Variational Inference), a
ecouple loss for decoupling DSRs and DCRs (Decouple), a bridge loss for connecting user DCRs learned from different domains
Bridge), and a conditional information component using the DSRs to learn DCRs (Conditional Information). The recommendation
erformances of using one to all the components in DRLCDR are reported in Table 3.

The base model of DRLCDR utilizes variational inference to learn DCR and DSR. By adopting the decoupled loss, we observe
mproved performance, highlighting the significance of distinguishing between domain-specific and domain-shared preferences in
DR. With the consideration of the bridge loss, it is observed that the performance can be further improved. Note that the DCRs
re learned separately in each domain to represent the domain-shared preferences in our model. The improvement demonstrates
hat it is crucial to ensure their proximity in the embedding space. Although our model does not employ DSRs as conditional
nformation when learning DCRs, the marked improvement in recommendation performance on most datasets clearly demonstrates
he effectiveness of the decouple loss and bridge loss. We include this component in the final step to show the utility of DSRs as
uiding information in the DCRs learning process. Significantly, it further enhances performance, even after employing the bridge
oss, emphasizing the effectiveness of our design. This experiment effectively demonstrates the validity of each component in our
odel.

.4. Influence of hyperparameters (RQ3)

In this section, we investigate the effect of three hyperparameters: 𝛼, 𝛽, and 𝛾 in the loss function. Due to space limitations, we
nly show the results on Cloth&Phone and Sport&Phone experimental groups. The results on other groups exhibit a similar trend.
Influence of 𝛼. The parameter 𝛼 controls the level of approximation loss between the generated distribution and the true

istribution. The results in Fig. 3 demonstrate that setting a smaller value for 𝛼 results in the model being unable to learn a suitable
epresentation of user preferences, leading to suboptimal recommendation performance. On the other hand, a larger value of 𝛼 may
eaken the effects of the decouple loss and bridge loss, causing recommendation performance to drop sharply. We recommend

arefully selecting the value of 𝛼 between 0.2 and 0.4 for optimal results
Influence of 𝛽. The parameter 𝛽 is used to control the degree of mutual exclusion of DSRs and DCRs. The results in Fig. 4 indicate
11

hat a smaller 𝛽 fails to effectively decouple these representations, resulting in lower recommendation performance. Conversely, a
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Fig. 3. Influence of 𝛼.

Fig. 4. Influence of 𝛽.

Fig. 5. Influence of 𝛾.

larger 𝛽 overemphasizes the mutual exclusion of these representations and causes loss of information in the user representation,
leading to reduced generalization ability and suboptimal recommendation performance. In our experiments, a value between 10
and 20 would be better for 𝛽.

Influence of 𝛾. The parameter 𝛾 controls the degree of approximation for domain condition representation of two domains.
The results in Fig. 5 show a smaller 𝛾 leads to ineffective knowledge transfer between the domains, resulting in relatively worse
recommendation performance. Conversely, a larger 𝛾 may make the model put more focus on the closeness of DCRs in different
domains, while affecting user representation learning. An optimal value of 𝛾 would be 10 and 20 in our experiments.

6. Conclusion

In this paper, we presented a novel cross-domain recommendation model called DRLCDR, which learns the domain-specific
representations (DSRs) and domain-shared representations (called domain-conditional representations or DCRs in our model)
12

separately in each model by using the variational bipartite graph encoder. In particular, to ensure the DCRs learned in different
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domains to be similar, we use the DSRs learned in one domain as conditional information to guide the learning of DCRs in the
other domain. In addition, a bridge loss is designed to further encourage the their closeness in the embedding space. To prevent
the transfer of DSRs to the target domain, we use a decouple loss to disentangle the DSRs and DCRs in each domain. We evaluate
the effectiveness of our model through experiments on four real-world datasets and compare it to a robust set of baselines, and the
results demonstrate the superiority of our model.
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